zOS: Next Generation Paradigm for Artificial and Emotional Intelligent Networks and Services

Presenter: Cihan Tunc

Lead faculty: Dr. Salim Hariri, UA

Students: Cameron Bose, Pratik Satam

CAC faculty: Dr. Cihan Tunc
Dr. Salim Hariri

Industry: BPU Holdings

Cloud and Autonomic Computing Center
Semi Annual IAB Meeting, April 23-25, 2017
Tucson, Arizona
Outline

- Project Goals, Motivations
- Project Overview
- Project team members
- Background and Related Research
- Overview of project tasks
- Activities and outcomes
- Deliverables and benefits
- LIFE form input
Project Team Members

Faculty

Dr. Salim Hariri
Director, CAC Director & ECE Department, The University of Arizona

Dr. Cihan Tunc
Research Assistant Professor, ECE Department, The University of Arizona

Students

Cameron Bose
BSc student, The University of Arizona

Pratik Satam
PhD student, The University of Arizona
Motivation

- Smart devices are proliferating with the promise to make human lives better.
- Large set of smart wearables: phones, watches, glasses, etc.
- The machines are monitoring almost every aspect of our lives.
- Problems arise because these technologies use proprietary underlying infrastructure that enforces brand controls.
- Current control and management technologies are incapable to manage and secure such complex, dynamic infrastructures and services.
Project Goals, Motivation

Goal

- Primary goal is to empower the human
- Unification technology that reduces the proliferation of personally identifiable information
- Introduce a new model where people manage their own information, not Facebook or Google, or some other company
- Machines, hardware or software can comply, cooperate or be firewalled by intelligent proxies
- Using AI technology to learn and understand emotional patterns to assist human-coached decisions
 - Providing services to help daily life
zOS architecture
zOS Application

Intelligent Cyber Security Assistant ICSA

Learning & Intelligence
Predicts Event Behavior
Provides Recommendations
Engage and Apply Automated Actions
Create a smart zOS based backup system using voice commands

Can be partially on cloud & partially on the device
zOS Application
A system can be considered as a tuple as
\[\text{System} = \{\text{Hardware, Software, Configuration}\} \]

We can create a device specific unique ID using the system definition as

- **Hardware specific information:**
 - MAC
 - CPU information

- **Software specific information:**
 - Active services
 - Kernel

- **Configurations:**
 - Users and their passwords
 - Boot configuration
zOS boot-up time integrity check

Boot-up time system integrity check

Hardware attributes

Key generator

Obfuscator

System Encryption/Decryption

Success

Decrypt & Run

Failure

Shutdown

Software attributes
zOS System Registration

- Step 0: Create zOS system
- Step 1: Create KP1 and KP2 and keep the PUB keys on zOS and PRI keys on-house
- Step 2: zOS creates AF
- Step 3: zOS contacts LS with AF (encrypted with PUB2)
- Step 4: DigitalMe servers generates LC using AF with PRI1
 \[LC = AF + \text{Capabilities} + \text{Time info} + \text{Signature (using PRI1)} \]
- Step 5: DigitalMe uploads LC to LS and AS through HTTPS
zOS License Check

- Step 1: Get time information from LS (can be encrypted using KP3)
- Step 2: Using PUB1, validate signature (through RSA) in ThinPad (AS)
 - Valid license? Continue operation.
 - License expired? Buy license
 - License invalid? Shutdown system
zOS Environment Setup

- Create AEIOS environment
- Task 1.a – 3 Raspberry Pi will be used for thin-tech POD
- Task 1.b – A cloud environment will be created for the application deployment
- VM from Amazon or ACL private cloud
zOS Voice Interface Setup

- Include speech recognition & voice to text
- Open source tools: CMUSphinx, Mozilla Speech Recognition, Kaldi, Simon, etc.
- Commercial tools, e.g. Google API
Milestones and Deliverables for 2018

Milestones for the current proposed year:
- Q1: Building the framework, including registration & licensing system together with footprint
- Q2-Q3: Creating speech recognition & voice based service oriented commands and creating thin-pads to be used for the personal assistant
- Q4: Building proof-of-concept environment

Deliverables for the current proposed year:
1. Expanding framework;
2. Improving the personal assistant capabilities and connecting to the services;
3. Various services;
4. Public reports or publications.
Potential Member Company Benefits

Expected benefits to members and other CAC projects include:

• Creating the next-gen open-source middleware/OS
• Help community through services such as
 • Digital Patient Assistant
 • Digital IT Assistant
• Know-how on how to enhance the living environments
Please take a moment to fill out your L.I.F.E. forms.

http://www.iucrc.com
Select “Cloud and Autonomic Computing Center” then select “IAB” role.

What do you like about this project?
What would you change?
(Please include all relevant feedback.)